organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Hydroxy-3-methoxyphenyl)-1*H*benzimidazol-3-ium perchlorate

Chuan Chen, Hong-Xing Li, Guang-Feng Hou and Guang-Ming Li*

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: gmli_2000@163.com

Received 12 May 2012; accepted 22 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.140; data-to-parameter ratio = 15.1.

In the title molecular salt, $C_{14}H_{13}N_2O_2^+ \cdot ClO_4^-$, the ring systems in the cation are almost coplanar [dihedral angle = $5.53 (13)^\circ$]. Intramolecular N-H···O and O-H···O hydrogen bonds generate S(6) and S(5) rings, respectively. In the crystal, the two H atoms involved in the intramolecular hydrogen bonds also participate in intermolecular links to acceptor O atoms of the perchlorate anions. A simple intermolecular N-H···O bond also occurs. Together, these form a double-chain structure along [101].

Related literature

For a related structure, see: Yang et al. (2010).

Experimental

Crystal data $C_{14}H_{13}N_2O_2^+ \cdot CIO_4^ M_r = 340.71$ Monoclinic, $P2_1/c$

a = 7.7698 (16) Åb = 20.462 (4) Åc = 9.856 (2) Å

$\beta = 113.09 \ (3)^{\circ}$
$V = 1441.4 (5) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\rm min} = 0.864, T_{\rm max} = 0.884$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.140$ S = 1.033285 reflections 218 parameters 15 restraints 13683 measured reflections

 $0.50 \times 0.45 \times 0.42$ mm

 $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K

3285 independent reflections 2025 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen bond geometr

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2$ $O1-H1\cdots O4^{i}$ $N1-H101\cdots O1$ $N1-H101\cdots O5$ $N2-H102\cdots O3^{ii}$	0.82 (1) 0.82 (1) 0.90 (1) 0.90 (1) 0.89 (1)	2.20 (3) 2.13 (2) 2.12 (3) 2.04 (2) 2.06 (2)	2.635 (3) 2.869 (3) 2.660 (3) 2.819 (3) 2.857 (4)	114 (3) 151 (3) 118 (3) 144 (3) 149 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x - 1, y, z - 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6796).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, X. P., Jones, R. A., Wiester, M. J., Oye, M. M. & Wong, W. K. (2010). Cryst. Growth Des. 8, 3430–3436.

supplementary materials

Acta Cryst. (2012). E68, o1920 [doi:10.1107/S1600536812023422]

2-(2-Hydroxy-3-methoxyphenyl)-1H-benzimidazol-3-ium perchlorate

Chuan Chen, Hong-Xing Li, Guang-Feng Hou and Guang-Ming Li

Comment

The title compound is an unexpected product during the process of preparing the N,N'-phenyl-bis(3-methoxy-salicylaldimine) and Ce complex. We speculate that the title ligand was produced form the decomposition of N,N'-phenyl-bis(3-methoxysalicylaldimine). A similar ligand and Yb cation constructed metallic cluster has been reproted by Yang's group (Yang *et al.* 2010).

In the title compound, $[C_{14}H_{13}N_2O_2][ClO_4]$, the phenyl ring and benzimidazol ring are almost conplane with small dihedral angle of 5.517 (1) ° (Figure 1). Intermolecular N—H···O and O—H···O hydrogen bonds link these protonated ligands and perchlorate anions to form double chain structure along [101] (Figure 2, Table 1).

Experimental

A solution of N,N'-phenyl-bis(3-methoxysalicylaldimine) (0.1502 g, 0.4 mmol) in 10 mL CH_2Cl_2 , was added dropwise to a solution of $[Ce(ClO_4)_3]$ $^{\circ}9H_2O$ (0.1984 g, 0.4 mmol) in 10 mL of CH_3OH solution, after then the mixsure was keeping stir about 12h. Pale brown blocks were obtained after seven days. Elemental Anal. Calc. for $C_{14}H_{13}ClN_2O_6$: C, 49.35; H, 3.85; Cl, 10.41; N, 8.22; O, 28.17 wt%, Found: C, 49.32; H, 3.86; Cl, 10.40; N, 8.24 O, 28.15 wt%.

Refinement

C-bound H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.96 Å (aromatic / methyl) and $U_{iso}(H) = 1.2 \setminus 1.5U_{eq}(C)$. H atoms attached to N and O atoms were located in a differece Fourier map and refined with a restraint of N—H = 0.90 (1) Å and O—H = 0.82 (1), and with $U_{iso}(H) = 1.5U_{eq}(N \text{ and } O)$.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The double chain structure.

2-(2-Hydroxy-3-methoxyphenyl)-1H-benzimidazol-3-ium perchlorate

Crystal data	
$C_{14}H_{13}N_2O_2^+ \cdot ClO_4^-$	$\beta = 113.09 (3)^{\circ}$
$M_r = 340.71$	$V = 1441.4 (5) A^3$
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 704
a = 7.7698 (16) Å	$D_{\rm x} = 1.570 {\rm ~Mg} {\rm ~m}^{-3}$
b = 20.462 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 9.856 (2) Å	Cell parameters from 7910 reflections

 $\theta = 3.0-27.4^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.864, T_{\max} = 0.884$

Refinement

nejmement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
3285 reflections	and constrained refinement
218 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.5284P]$
15 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Block, colorless

 $R_{\rm int} = 0.061$

 $h = -10 \rightarrow 9$ $k = -26 \rightarrow 26$

 $l = -12 \rightarrow 12$

 $0.50 \times 0.45 \times 0.42 \text{ mm}$

 $\theta_{\rm max} = 27.5^{\circ}, \, \theta_{\rm min} = 3.0^{\circ}$

13683 measured reflections

3285 independent reflections

2025 reflections with $I > 2\sigma(I)$

Refinement. isor 0.01 o5 o6 dfix 0.90 0.01 h101 n1 h102 n2 dfix 0.82 0.01 o1 h1 Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

F 1		1	1	• , •			1. 1		182
Fractional	atomic	coordinates	and	isotropic (or eauivalen	t isotronic	e displacement	parameters	1 A* I
1		00010000000		noon op ie e	. equinitation	, 15011 op 10	and proceeding of the	p an anno con o	(/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2919 (3)	0.54938 (10)	0.6641 (2)	0.0448 (5)	
H1	0.318 (5)	0.5726 (15)	0.737 (3)	0.067*	
O2	0.1478 (3)	0.66205 (11)	0.6962 (2)	0.0536 (6)	
03	0.8344 (4)	0.46040 (16)	0.9925 (3)	0.0933 (10)	
O4	0.5840 (4)	0.41460 (17)	1.0309 (3)	0.0886 (9)	
05	0.5714 (4)	0.43412 (17)	0.7935 (2)	0.0900 (10)	
O6	0.7608 (6)	0.35259 (16)	0.9385 (4)	0.1203 (13)	
C1	0.3647 (4)	0.39510 (13)	0.4381 (3)	0.0348 (6)	
C2	0.4842 (4)	0.34335 (15)	0.5008 (3)	0.0451 (7)	
H2	0.5525	0.3404	0.6020	0.054*	
C3	0.4962 (4)	0.29644 (16)	0.4046 (4)	0.0528 (8)	
H3	0.5726	0.2603	0.4424	0.063*	

C4	0.3972 (4)	0.30136 (17)	0.2519 (4)	0.0556 (8)
H4	0.4126	0.2692	0.1910	0.067*
C5	0.2779 (5)	0.35259 (17)	0.1898 (3)	0.0540 (8)
Н5	0.2119	0.3559	0.0884	0.065*
C6	0.2609 (4)	0.39922 (14)	0.2863 (3)	0.0401 (6)
C7	0.1917 (4)	0.48632 (14)	0.3912 (3)	0.0357 (6)
C8	0.1067 (4)	0.54718 (13)	0.4073 (3)	0.0361 (6)
C9	-0.0326 (4)	0.57649 (15)	0.2837 (3)	0.0458 (7)
H9	-0.0722	0.5561	0.1921	0.055*
C10	-0.1100 (4)	0.63489 (16)	0.2979 (3)	0.0513 (8)
H10	-0.2025	0.6537	0.2156	0.062*
C11	-0.0525 (4)	0.66657 (16)	0.4331 (3)	0.0481 (7)
H11	-0.1035	0.7068	0.4407	0.058*
C12	0.0804 (4)	0.63794 (14)	0.5558 (3)	0.0412 (7)
C13	0.1614 (4)	0.57819 (14)	0.5442 (3)	0.0371 (6)
C14	0.0861 (5)	0.72523 (17)	0.7194 (4)	0.0610 (9)
H14A	0.1256	0.7573	0.6665	0.091*
H14B	0.1392	0.7353	0.8228	0.091*
H14C	-0.0479	0.7255	0.6845	0.091*
C11	0.68517 (11)	0.41471 (4)	0.93839 (7)	0.0463 (2)
N1	0.3185 (3)	0.45039 (11)	0.4985 (2)	0.0351 (5)
H101	0.367 (4)	0.4594 (16)	0.5954 (13)	0.053*
N2	0.1566 (4)	0.45555 (13)	0.2634 (2)	0.0442 (6)
H102	0.079 (4)	0.4709 (17)	0.177 (2)	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0481 (12)	0.0439 (12)	0.0338 (9)	0.0034 (10)	0.0068 (9)	-0.0052 (8)
O2	0.0597 (14)	0.0452 (13)	0.0546 (12)	0.0044 (11)	0.0210 (11)	-0.0124 (10)
O3	0.0832 (19)	0.114 (3)	0.0514 (14)	-0.0493 (18)	-0.0079 (13)	0.0054 (15)
O4	0.0807 (19)	0.135 (3)	0.0592 (15)	0.0109 (19)	0.0376 (15)	0.0040 (16)
O5	0.0704 (18)	0.139 (3)	0.0349 (12)	-0.0005 (18)	-0.0075 (11)	0.0044 (14)
O6	0.186 (4)	0.062 (2)	0.146 (3)	0.038 (2)	0.100 (3)	0.0105 (19)
C1	0.0364 (14)	0.0327 (15)	0.0362 (12)	-0.0054 (11)	0.0151 (12)	-0.0020 (11)
C2	0.0398 (16)	0.0443 (18)	0.0456 (15)	0.0021 (13)	0.0107 (13)	-0.0011 (13)
C3	0.0423 (17)	0.0423 (19)	0.072 (2)	0.0015 (14)	0.0206 (16)	-0.0054 (15)
C4	0.0515 (19)	0.055 (2)	0.0638 (19)	-0.0042 (16)	0.0265 (17)	-0.0215 (16)
C5	0.058 (2)	0.059 (2)	0.0426 (15)	-0.0010 (17)	0.0173 (15)	-0.0135 (14)
C6	0.0444 (16)	0.0398 (17)	0.0359 (13)	-0.0059 (12)	0.0155 (12)	-0.0038 (11)
C7	0.0386 (15)	0.0365 (15)	0.0295 (12)	-0.0064 (12)	0.0106 (11)	0.0014 (10)
C8	0.0355 (14)	0.0323 (15)	0.0386 (13)	-0.0028 (12)	0.0123 (11)	0.0020 (11)
C9	0.0497 (17)	0.0418 (18)	0.0381 (14)	-0.0027 (14)	0.0089 (13)	0.0052 (12)
C10	0.0509 (19)	0.0452 (19)	0.0512 (17)	0.0056 (15)	0.0129 (15)	0.0152 (14)
C11	0.0478 (18)	0.0363 (17)	0.0629 (18)	0.0025 (14)	0.0245 (16)	0.0070 (14)
C12	0.0423 (16)	0.0353 (16)	0.0492 (15)	-0.0056 (12)	0.0214 (14)	-0.0032 (12)
C13	0.0330 (14)	0.0363 (16)	0.0382 (13)	-0.0067 (12)	0.0100 (11)	0.0022 (11)
C14	0.069 (2)	0.044 (2)	0.075 (2)	-0.0003 (17)	0.0338 (19)	-0.0128 (17)
Cl1	0.0494 (4)	0.0493 (4)	0.0333 (3)	-0.0014 (4)	0.0086 (3)	-0.0021 (3)
N1	0.0388 (12)	0.0355 (13)	0.0277 (10)	-0.0017 (10)	0.0094 (10)	-0.0003 (9)

<u>N2</u>	0.0529 (15)	0.0443 (15)	0.0278 (10)	0.0031 (12)	0.0075 (11)	0.0012 (9)		
Geometric parameters (Å, °)								
01—C	13	1.353 (3)		C6—N2		1.376 (4)		
01—Н	1	0.816 (10)	C7—N2		1.337 (3)		
02—С	12	1.365 (3)	, ,	C7—N1		1.346 (3)		
02—С	14	1.428 (4)		С7—С8		1.447 (4)		
03—С	11	1.420 (3)		C8—C13		1.398 (4)		
O4—C	11	1.419 (3)		С8—С9		1.408 (4)		
05—С	11	1.410 (2)		C9—C10		1.369 (4)		
06—C	11	1.400 (3)		С9—Н9		0.9300		
C1—C	2	1.384 (4)		C10-C11		1.389 (4)		
C1—N	1	1.389 (3)		C10—H10		0.9300		
C1—C	6	1.396 (4)		C11—C12		1.375 (4)		
C2—C	3	1.378 (4)		C11—H11		0.9300		
С2—Н	2	0.9300		C12—C13		1.400 (4)		
С3—С	4	1.400 (4)		C14—H14A		0.9600		
С3—Н	3	0.9300		C14—H14B		0.9600		
C4—C	5	1.374 (5)		C14—H14C		0.9600		
С4—Н	4	0.9300		N1—H101		0.897 (10)		
С5—С	6	1.389 (4)		N2—H102		0.885 (10)		
С5—Н	5	0.9300						
C13—0	D1—H1	111 (3)		С9—С10—Н10		119.5		
C12—0	D2—C14	118.0 (3)		C11—C10—H10		119.5		
С2—С	1—N1	132.2 (3)		C12—C11—C10		119.5 (3)		
С2—С	1—C6	122.0 (3)		C12—C11—H11		120.2		
N1—C	1—C6	105.8 (2)		C10-C11-H11		120.2		
C3—C	2—C1	116.1 (3)		O2—C12—C11		126.5 (3)		
C3—C	2—Н2	121.9		O2—C12—C13		113.1 (3)		
C1—C	2—H2	121.9		C11—C12—C13		120.5 (3)		
С2—С	3—C4	122.2 (3)		O1—C13—C8		119.0 (3)		
С2—С	3—Н3	118.9		O1-C13-C12		121.1 (2)		
C4—C	3—Н3	118.9		C8-C13-C12		119.9 (3)		
C5—C	4—C3	121.6 (3)		O2—C14—H14A		109.5		
C5—C	4—H4	119.2		O2—C14—H14B		109.5		
C3—C	4—H4	119.2		H14A—C14—H14B		109.5		
C4—C	5—C6	116.6 (3)		O2—C14—H14C		109.5		
C4—C	5—H5	121.7		H14A—C14—H14C		109.5		
C6—C	5—H5	121.7		H14B—C14—H14C		109.5		
N2—C	6—C5	132.1 (3)		06-Cl1-O5		110.6 (2)		
N2-C	6—C1	106.4(2)		06-C11-04		109.7(2)		
C5—C	6—C1	121.5 (3)		05—C11—O4		111.48 (18)		
N2—C	7—N1	107.4 (2)		06-C11-O3		108.5 (2)		
N2—C	7—C8	125.1 (2)		05-Cl1-03		106.87 (18)		
N1-C	7—C8	123.1 (2)		04-C11-03		109.64 (19)		
C13—(118 8 (3)		C7-N1-C1		109.9 (2)		
C13_(C8—C7	121 2 (2)		C7—N1—H101		127 (2)		
С9—С	8—C7	120.0 (2)		C1—N1—H101		123 (2)		

supplementary materials

С10—С9—С8	120.2 (3)	C7—N2—C6	110.5 (2)
С10—С9—Н9	119.9	C7—N2—H102	123 (2)
С8—С9—Н9	119.9	C6—N2—H102	126 (2)
C9—C10—C11	121.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O2	0.82 (1)	2.20 (3)	2.635 (3)	114 (3)
O1—H1···O4 ⁱ	0.82 (1)	2.13 (2)	2.869 (3)	151 (3)
N1—H101…O1	0.90(1)	2.12 (3)	2.660 (3)	118 (3)
N1—H101···O5	0.90(1)	2.04 (2)	2.819 (3)	144 (3)
N2—H102···O3 ⁱⁱ	0.89 (1)	2.06 (2)	2.857 (4)	149 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*-1, *y*, *z*-1.